TY - JOUR
T1 - XBP-1 specifically promotes IgM synthesis and secretion, but is dispensable for degradation of glycoproteins in primary B cells
AU - Tirosh, Boaz
AU - Iwakoshi, Neal N.
AU - Glimcher, Laurie H.
AU - Ploegh, Hidde L.
PY - 2005/8
Y1 - 2005/8
N2 - Differentiation of B cells into plasma cells requires X-box binding protein-1 (XBP-1). In the absence of XBP-1, B cells develop normally, but very little immunoglobulin is secreted. XBP-1 controls the expression of a large set of genes whose products participate in expansion of the endoplasmic reticulum (ER) and in protein trafficking. We define a new role for XBP-1 in exerting selective translational control over high and sustained levels of immunoglobulin M (IgM) synthesis. XBP-1-/- and XBP-1+/+ primary B cells synthesize IgM at comparable levels at the onset of stimulation with lipopolysaccharide or CpG. However, later there is a profound depression in synthesis of IgM in XBP-1-/- B cells, notwithstanding similar levels of μmRNA. In marked contrast, lack of XBP-1 does not affect synthesis and trafficking of other glycoproteins, or of immunoglobulin light chains. Contrary to expectation, degradation of proteins from the ER, using TCRα or US11-mediated degradation of class I major histocompatibility complex molecules as substrates, is normal in XBP-1-/- B cells. Furthermore, degradation of membrane μ was unaffected by enforced expression of XBP-1. We conclude that in primary B cells, the XBP-1 pathway promotes synthesis and secretion of IgM, but does not seem to be involved in the degradation of ER proteins, including that of μ chains themselves. JEM
AB - Differentiation of B cells into plasma cells requires X-box binding protein-1 (XBP-1). In the absence of XBP-1, B cells develop normally, but very little immunoglobulin is secreted. XBP-1 controls the expression of a large set of genes whose products participate in expansion of the endoplasmic reticulum (ER) and in protein trafficking. We define a new role for XBP-1 in exerting selective translational control over high and sustained levels of immunoglobulin M (IgM) synthesis. XBP-1-/- and XBP-1+/+ primary B cells synthesize IgM at comparable levels at the onset of stimulation with lipopolysaccharide or CpG. However, later there is a profound depression in synthesis of IgM in XBP-1-/- B cells, notwithstanding similar levels of μmRNA. In marked contrast, lack of XBP-1 does not affect synthesis and trafficking of other glycoproteins, or of immunoglobulin light chains. Contrary to expectation, degradation of proteins from the ER, using TCRα or US11-mediated degradation of class I major histocompatibility complex molecules as substrates, is normal in XBP-1-/- B cells. Furthermore, degradation of membrane μ was unaffected by enforced expression of XBP-1. We conclude that in primary B cells, the XBP-1 pathway promotes synthesis and secretion of IgM, but does not seem to be involved in the degradation of ER proteins, including that of μ chains themselves. JEM
UR - http://www.scopus.com/inward/record.url?scp=23944434028&partnerID=8YFLogxK
U2 - 10.1084/jem.20050575
DO - 10.1084/jem.20050575
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 16103408
AN - SCOPUS:23944434028
SN - 0022-1007
VL - 202
SP - 505
EP - 516
JO - Journal of Experimental Medicine
JF - Journal of Experimental Medicine
IS - 4
ER -