TY - JOUR
T1 - ZRANB2 localizes to supraspliceosomes and influences the alternative splicing of multiple genes in the transcriptome
AU - Yang, Yee Hwa J.
AU - Markus, M. Andrea
AU - Mangs, A. Helena
AU - Raitskin, Oleg
AU - Sperling, Ruth
AU - Morris, Brian J.
PY - 2013/9
Y1 - 2013/9
N2 - Alternative splicing is a major source of protein diversity in humans. The human splicing factor zinc finger, Ran-binding domain containing protein 2 (ZRANB2) is a splicing protein whose specific endogenous targets are unknown. Its upregulation in grade III ovarian serous papillary carcinoma could suggest a role in some cancers. To determine whether ZRANB2 is part of the supraspliceosome, nuclear supernatants from human embryonic kidney 293 cells were prepared and then fractioned on a glycerol gradient, followed by Western blotting. The same was done after treatment with a tyrosine kinase to induce phosphorylation. This showed for the first time that ZRANB2 is part of the supraspliceosome, and that phosphorylation affects its subcellular location. Studies were then performed to understand the splicing targets of ZRANB2 at the whole-transcriptome level. HeLa cells were transfected with a vector containing ZRANB2 or with a vector-only control. RNA was extracted, converted to cDNA and hybridized to Affymetrix GeneChip® Human Exon 1.0 ST Arrays. At the FDR ≤1.3 significance level we found that ZRANB2 influenced the alternative splicing of primary transcripts of CENTB1, WDR78, C10orf18, CABP4, SMARCC2, SPATA13, OR4C6, ZNF263, CAPN10, SALL1, ST18 and ZP2. Several of these have been implicated in tumor development. In conclusion ZRANB2 is part of the supraspliceosome and causes differential splicing of numerous primary transcripts, some of which might have a role in cancer.
AB - Alternative splicing is a major source of protein diversity in humans. The human splicing factor zinc finger, Ran-binding domain containing protein 2 (ZRANB2) is a splicing protein whose specific endogenous targets are unknown. Its upregulation in grade III ovarian serous papillary carcinoma could suggest a role in some cancers. To determine whether ZRANB2 is part of the supraspliceosome, nuclear supernatants from human embryonic kidney 293 cells were prepared and then fractioned on a glycerol gradient, followed by Western blotting. The same was done after treatment with a tyrosine kinase to induce phosphorylation. This showed for the first time that ZRANB2 is part of the supraspliceosome, and that phosphorylation affects its subcellular location. Studies were then performed to understand the splicing targets of ZRANB2 at the whole-transcriptome level. HeLa cells were transfected with a vector containing ZRANB2 or with a vector-only control. RNA was extracted, converted to cDNA and hybridized to Affymetrix GeneChip® Human Exon 1.0 ST Arrays. At the FDR ≤1.3 significance level we found that ZRANB2 influenced the alternative splicing of primary transcripts of CENTB1, WDR78, C10orf18, CABP4, SMARCC2, SPATA13, OR4C6, ZNF263, CAPN10, SALL1, ST18 and ZP2. Several of these have been implicated in tumor development. In conclusion ZRANB2 is part of the supraspliceosome and causes differential splicing of numerous primary transcripts, some of which might have a role in cancer.
KW - Cancer
KW - Pre-mRNA splicing
KW - Spliceosome
KW - Zinc finger
KW - ZNF265
UR - http://www.scopus.com/inward/record.url?scp=84883265250&partnerID=8YFLogxK
U2 - 10.1007/s11033-013-2637-9
DO - 10.1007/s11033-013-2637-9
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 23666063
AN - SCOPUS:84883265250
SN - 0301-4851
VL - 40
SP - 5381
EP - 5395
JO - Molecular Biology Reports
JF - Molecular Biology Reports
IS - 9
ER -